skip to main content


Search for: All records

Creators/Authors contains: "Belianinov, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A helium gas field ion source has been demonstrated to be capable of realizing higher milling resolution relative to liquid gallium ion sources. One drawback, however, is that the helium ion mass is prohibitively low for reasonable sputtering rates of bulk materials, requiring a dosage that may lead to significant subsurface damage. Manipulation of suspended graphene is, therefore, a logical application for He+ milling. We demonstrate that competitive ion beam-induced deposition from residual carbonaceous contamination can be thermally mitigated via a pulsed laser-assisted He+ milling. By optimizing pulsed laser power density, frequency, and pulse width, we reduce the carbonaceous byproducts and mill graphene gaps down to sub 10 nm in highly complex kiragami patterns. 
    more » « less
  2. Abstract

    Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3are translatable to a wide range of catalyst systems.

     
    more » « less
  3. Abstract

    Metal halide perovskites (MHPs) have attracted broad research interest due to their outstanding optoelectronic performance. This performance has been attributed in part to the presence of polarization in these materials. However, the precise effects of chemical environment and strain condition on the polar states in MHPs have largely been missing. It is revealed for the first time that chemical gradient is directly coupled with strain gradient in CH3NH3PbI3. This strain–chemical gradient induces an electric polarization that can potentially affect charge carrier dynamics. Furthermore, it is unveiled that this electric polarization—unlike ferroelectricity that only exists in noncentrosymmetric materials—can be present in both tetragonal and cubic phases of CH3NH3PbI3. This suggests that the strain–chemical gradient induced polarization is a more convincing explanation of the outstanding photovoltaic properties of MHPs than the hotly debated ferroelectric polarization. Finally, a mechanism of how this polarization impacts photovoltaic action is proposed, which offers insightful advances in the development of MHPs.

     
    more » « less
  4. Abstract

    Given the remarkable performance of hybrid organic–inorganic perovskites (HOIPs) in solar cells, light emitters, and photodetectors, the quest to advance the fundamental understanding of the photophysical properties in this class of materials remains highly relevant. Recently, the discovery of ferroic twin domains in HOIPs has renewed the debate of the ferroic effects on optoelectric processes. This work explores the interaction between light and ferroic twin domains in CH3NH3PbI3. Due to strain and chemical inhomogeneities, photogenerated electrons and holes show a preferential motion in the ferroelastic twin domains. Density functional theory (DFT) shows that electrons and holes result in lattice expansion in CH3NH3PbI3differently. Hence, light generates strain in the ferroelastic domains due to preferential photocarrier motion, leading to a screening of strain variation. X‐ray diffraction studies verify the DFT simulations and reveal that the photoinduced strain is light intensity dependent, and the photoexcitation is a prerequisite of inducing strain by light. This work extends the fundamental understanding of light‐ferroic interaction and offers guidance for developing functional devices.

     
    more » « less